
1

Designing a Tactograph
S R V Vishwanath, S Veer, R Mittapally, N Chandrachoodan, A Prabhakar, S Srinivasan

Abstract—We have developed a low cost assistive device for tactiling

simple images in pre-literacy and early literacy books for visually

impaired children. A parallel five bar manipulator was chosen after

comparing parameters like: cost, manufacturability, repeatability etc.

The correction pen was found appropriate for fluid dissemination. A

parallelogram linkage was designed for the actuation of the correction

pen. Link lengths of the parallel five bar manipulator were chosen based

on the workspace area and resolution using Matlab. Adams simulation

was used to determine the torque requirement and Abaqus was used to

analyze the link deflections. A PIC18F4550 microcontroller with USB

support was used for controlling the motors. The host side software

was completely written in python. Linear interpolation algorithm was

implemented for end effector control. A GUI was made to enable ease

of use for end user.

I. INTRODUCTION

Reading is an essential and fundamental need for survival in
an interconnected world. However, in India, there is a dearth of
affordable tactile books for children who are in the early stages of
developing literacy. Consequently, children who join primary school
have poor reading skills and are at a disadvantage compared to
their peers. Teaching Braille to young visually impaired children is
a challenging task. Few children enjoy reading text which is the
reason why children’s books are adorned with images to instill an
interest towards them. Books with tactile images bring value to both
the sighted and the visually impaired child, thus reinforcing the
concept of inclusive product design. Exploring such books can be
beneficial for these children in multiple ways [1].

• Develop imagination and creativity
• Discover the objects in different images
• Develop the proper representation through the relation among

object-image-word
• Develop the exploration of images
• Develop the visual and the tactile sensitivity as a primordial

step for writing and learning
Haptic perception of images can be achieved by tactiling or em-
bossing. Embossing being a costly process is normally not preferred
by book publishers. Tactiling using fabric paint on already printed
material was demonstrated [2] and has been adopted by Sarva Siksha
Abhiyan (SSA) in Tamil Nadu. However, the process is manual and
time consuming. We have now prototyped a Tactograph, which will
empower a small or medium enterprise (SME) to undertake the
tactiling of already printed material available in bookstores. Note
however that the Tactograph is not suitable for all graphic images.
The primary aim is to make pre-literacy and early-literacy books
available to the visually impaired. As such, the choice of the book
and its images plays an important role in making reading materials
accessible, e.g. images with too much detail or non-descriptive text
accompanying the image are poor choices. Simple lines and curves
are conducive to easy tactiling, and any minimal, but descriptive
text, can be added on in Braille while still retaining the original
image and text.

II. METHODOLOGY

The primary objective of our prototype is to demonstrate the
tracing of a predetermined set of lines with a quick drying fluid,
resulting in a tactile outline of the image. A sample of a tactile image
is shown in Figure 1. The lines to highlight and the colours to use
are chosen by an artist. Thereafter, the image is digitized and broken
down to a set of curves that the tactograph must follow. This simple

SRVV, NC and AP are with the Dept. of Electrical Engineering, and SV,
RM and SS are with the Dept. of Mechanical Engineering, Indian Institute
of Technology Madras, India, e-mail: vishwa.hyd@gmail.com

approach helps minimize the cost of the tactograph, while the burden
of faithful reproduction on multiple copies of the book is taken on
by a computer. To achieve these objectives, we had to develop an
automated way of correcting for any shifts (translation and rotation)
when a fresh image is placed on the tactograph, and then have a
mechanical fixture capable of tracing the digitized outline.

Figure 1. An image tactiled using fabric paint in the book Line and Circle,
by Tulika Publishers. The simplicity of the outlines and the text make the
book accessible to a child with visual impairment.

A. Mechanical Design

There are many ways of designing a plotter. We evaluated
three different designs, keeping various technical and economic
parameters in mind. These are summarized in Table I, and we
conclude that a five bar pantograph is the preferred option.

Table I
COMPARATIVE EVALUATION OF DIFFERENT PLOTTER MECHANISMS.

Parameters X-Y

Table

Two Link

Robotic

Arm

Five Bar

Pantograph

Cost - - +
Maintainance - + +
Simplicity - + +
Manufacturing time - + +
Weight - + +
Integration - + +
Repeatability + + +
Static actuators - - +
Uniform �x,�y + - -

Score -5 +6 +8

A question that arises is, “why can a printer not be re-engineered
and used?” A printer plots by scanning the x axis, keeping y

constant and this is done for all y. However, the images to be
tactiled demand that there be continuity in the plotted points, so
that the fluid forms a neat curve. Hence the plotter cannot be
made to scan the whole page. Besides, most printers use a drum
roller feed mechanism to feed the paper into the printer, which will
smudge the white fluid on the paper. We compared two possible
mechanisms to control the fluid flow, which we summarize in
Table II. The table clearly displays the advantages of using a fluid
correction pen for tactiling over a miniature fluid pump with a
nozzle. In a similar exercise, we also compared different plotter head
mechanisms in Table III, and finally chose to use a programmable
five bar pantograph linkage with a whitener pen, for the current
prototype. This whitener is mobilized in its up-down motion using
a parallelogram linkage. Figure 2 shows the side and top view of the
present design, along with a closer look at the plotter mechanism
that holds the fluid correction pen.



Table II
TACTILERS COMPARISON

Parameter Fluid pump Fluid correction

pen

Low cost - +
Low maintainance - +
Simple manufacturing - +
Low weight - +
Ease of integration + -
Good availability in market - +

Score -5 +5

Table III
COMPARISON OF PLOTTER HEAD MECHANISMS.

Parameters Slider

crank

mechanism

Rack and

pinion

mechanism

Parallelogram

linkage

Low cost - - +
Low Maintainance - - +
Manufacturing
simplicity

- - +

Manufacturing time - - +
Low weight - - +
Ease of assembly on
plotter

- - +
Low weight

Score -6 -6 +6

Figure 2. Side and top view of the prototype (first version) that has been
designed, with a closer view of the plotter mechanism.

1) Optimization: The optimization of the five bar pantograph re-
quires that we establish appropriate trade-offs between link lengths,
distance between the centres of the motor shaft and the distance
of an edge of the A4 sheet from the line joining the centre of the
motors, as shown in Figure 3. The objective functions of interest
are the maximum area (or workspace) on the A4 sheet, and the
resolution between points on the workspace. By varying the control
variables and following the constraints, several workspace plots were
obtained and the best one of them was used to determine the link
lengths, ground length and the distance of the A4 sheet from the
motors. The workspace plots were generated by writing a Matlab
code, with a typical result shown in Figure 4. One of the limitations
of the five bar pantograph is that the points in the workspace are not
equally spaced. However, the resolution we can achieve is sufficient
for our present requirements.

To ensure that the workspace generating code is giving the
correct points, a kinematic simulation of the pantograph was also
undertaken. This was accomplished, with reference to the diagram
in Figure 5, by holding crank2 static and running the rest of the
linkage, i.e. crank1, coupler1, coupler 2 and the imaginary ground
like a four bar mechanism [3]. After every complete run of the
fourbar, the crank2 angle was changed and the fourbar with a new
imaginary ground was run again. The singularities in a parallel five
bar manipulator have to be avoided while operation since it leads
to high torque. Our algorithm will avoid singularities caused by the
toggle of the two couplers and one crank attached to them, and
the toggle of crank1 r2 and coupler1 r3, i.e., when they align in a

Figure 3. Schematic of the five bar pantograph showing the variables used
during constraint optimization.

Figure 4. Plot of reachable points on a A4 sheet of paper.

straight line. Similarly, the other toggles considered were the crank2
r5 and coupler2 r4, and the coupler-coupler toggle.

Figure 5. Simulation diagram used to identify and eliminate singularities.

Figure 6. Torque vs time plot generated to estimate motor torque
requirements using Adams.

2) Mechanical Loads: The uniformity of our plotter is affected
by the load of the plotting mechanism. We used the Adams Multi-
body Dynamics Simulator to determine that the maximum torque at
the joint connected to the motor is around 460N-mm as observed
from the plot in Figure 6. Hence stepper motors with a maximum
torque rating of 1.1N-mm were chosen, giving a safety factor of
around 2.4. Similarly, the load on the links of the pantograph were



Figure 7. Cantilever beam FEM model.

expected to deform due to the weight of the plotting mechanism
at the end of the alumnium flat bars. The links were modeled
as cantilever beams in the FEM model using Abaqus to find the
maximum deviation under loading. The estimated tip loading on
the link considering weight of the succeeding link is around 205 gf,
with a moment of 0.26Nm in a static structural analysis. The end
deflection of the beam was estimated to be 0.211mm, which was
verified using a FEM model in Abaqus, shown in Figure 7.

B. Electronics

The electronic design was divided into two major groups, com-
munications over USB and power supply. The USB module acts as
an interface between the computer and the power board, while the
power module drives the stepper motors and the servo motor.

1) USB Module: There is no dearth of choice when it comes
to microcontrollers. As with the mechanical design, we did a
comparative evaluation between ATmega16 and PIC18F4550. The
comparison in Table IV helps understand why the USB module is
built around the microcontroller PIC18F4550 by Microchip. The
PIC microcontroller is USB 2.0 compliant, can operate in both
low speed (1.5Mbps) and high speed (12Mbps) with 1Kb Dual
Access RAM, has 32Kb flash memory and needs a 20MHz external
oscillator such that the PIC can be clocked at 48MHz, using an
internal phase locked loop (PLL) division.

Table IV
MICROCONTROLLER ANALYSIS

Processor Atmega16 PIC18F4550

Number of pins 40 40
Maximum operating frequence 16MHz 48MHz
Maximum I/O pins 32 30
Maximum Program Memory 16KB 32KB
USB support Through

USBtiny
Native

libUSB support yes yes
Free IDE/compiler yes/yes yes/no
USB Bootloader -NA- yes

The number of I/O pins is not a matter of concern, since we use
only 6 output pins. The native USB support for PIC18F4550 along
with standard library available for USB framework makes it ideal for
the present project. However, the compiler for PIC microcontroller
is not free but student evaluation version. It was be enough for the
project, since the code is not very big. A possible improvement
would be to change to PIC18F2550 to save space. An external
20MHz crystal oscillator is used as clock for the device. The device
is Bus powered, meaning, it wouldnt require any external power
to control the microcontroller. Two status LEDs have been used to
represent USB power and proper functioning of the device.

a) Construction of USB device: The device has been con-
structed based on PIC to PC communication [4]. The schematic
shown in Figure 8will help to understand the circuit better. Only
the PDx LED has been retained from the circuit given to keep the
device minimal. Care has to be taken to ensure that the capacitor
at Vusb is not excluded, lest it will give ’Device not found’ error.
The pins PA0, PA1 are the clock and the direction bit for the first
motor respectively. Similarly, PA2 and PA3 are the clock and the

direction bits for the second motor respectively. PB3 acts as the
position control bit for the servo motor, controlling the Fluid pen.
However, since the least acheivable frequency for PWM is 1 kHz
for the microcontroller and the servo requires 50Hz, the servo is
controlled by ATtiny85 micro controller. The PB3 output of PIC
microcontroller is given as input to the PB3 pin of the ATtiny85
microcontroller. The whole circuit is soldered on a custom PCB
made for DIP ICs. SMD construction has been avoided to reduce
cost.

The device connects to the computer through a standard USB
B type female connector. Also, the microcontroller needs to be
programmed only once through ICSP programmer. After that, USB
bootloader helps to program it through the USB port itself.

Figure 8. Circuit diagram of USB module.

b) Firmware: The device firmware was written in C, in MPLab
IDE and MPLab C18 compiler. The code was written on top of the
LibUSB firmware example provided by microchip. The device was
configured as low speed device with end point 1 used as the input
and output end point. In the basic example provided by microchip,
the following changes were made

1) The processIO function was changed to accomodate the
interrrupts recieved by the microcontroller

2) The following were the letters used as the interrupts:
a) 0

f

0 - rotate the first motor clockwise
b) 0

r

0 - rotate the first motor anticlockwise
c) 0

c

0 - rotate the second motor clockwise
d) 0

a

0 - rotate the second motor anticlockwise
e) 0

u

0 - Move the fluid pen up
f) 0

d

0 - Move the fluid pen down
3) The device was not configured to return anything to the

computer, but it can be reconfigured in case a bulk transfer of
the sequence of the rotations is to be sent.

4) The code has been cleaned of all the unneccessary code, for
other devices. In case the original code is required, Microchip
application libraries can be utilised [5].

2) Power Driver Modules: There are two power driver boards.
They are same in all respects except that, one board has servo motor
control microcontroller extra. As part of our optimization of costs,
we design the circuit to run off a commercially available adpator
from Dlink.

a) Servo Motor control: The servo motor requires a 50Hz
PWM output for position control. Hence we need a pulse of 20ms
duration to control the motor. Sending a pulse of 1ms duration keeps
the servo at 0o positon and sending a 2ms delay keeps the servo
at 180o. Please note that this pulse duration is not very precise and
may require some trial and error to find the exact duration of the
pulse for the corresponding angle

We used the ATtiny85 for servo control. It is a compact micro-
controller with 8 pins, 2KB of flash memory and an 8 bit timer.



The reason for choosing this microcontroller is for compactness of
the circuit.

The pin PB3 from the PIC microcontroller is connected to PB3
pin of the ATtiny85 microcontroller. When PB3 is logic 1, the servo
is set at 180� and when PB3 is logic 0, the servo is set at 90�. The
circuitry for the microcontroller is shown in Figure 9. The code
for this microcontroller is written in AVRstudio, with WINAVR.

The program is burnt with USBtinyISP. The improvement for the
servo control would be to include the PWM generator in the PIC
microcontroller itself, which would save a programming step.

Figure 9. Circuit diagram for servo motor control.

b) Power Board: The stepper motors are rated for 6V at 1A
current. However, since the torque requirements are low, the motor
is run at 5V . This also ensures that the current is below 1A and
hence the total current requirement stays below 2.5A.

The interface to stepper motors is a L297�L298 pair. The L297
is connected to the microcontroller, which gives the clock and the
direction. A negative edge causes the L297 to change the state. The
option for half step or full step is hardware selectable. In future, the
step selection will be made software selectable.

The L297 also has an inbuilt chopper for current control. A
trimport connected to the Vref pin helps to control the current
throught the stepper motor windings. For this purpose, an RC
network needs to be connected to the OSC pin of the driver.

The four pins of L297 output are connected to inputs of L298.
The L298 power driver is a full H-Bridge power driver with
maximum current of 2A per channel. Two 1⌦ resistors connected
to current sensing pins act as current sense inputs to L297. The 1⌦
resistor should be of atleast 1 Watt type to avoid burning. However,
it is suggested to go for 2-5 Watts. The circuit for one stepper motor
driver is shown in Figure 10.

Figure 10. Circuit diagram of the power module.

Table V
ANALYSIS OF CURRENT DRAWN UNDER DIFFERENT OPERATING

CONDITIONS.

Motor1 Motor2 Servo motor Current drawn (A)
2 coils On 2 coils On Up 2.43
2 coils On 2 coils On Down 2.16
2 coils On 1 coil On Up 1.76
2 coils On 1 coil On Down 1.42
1 coil On 1 coil On Up 1.20
1 coil On 1 coil On Down 1.12

A 5V, 2.5A power adapter by Dlink is used for power input. The
L298 chip may get hot during operation but addition of a heat sink is
not necessary, since the heat is within threshold. However, if it gets
too hot, check all the connections to ensure that the power drawn
is not exceeding the chip’s power ratings. The power adapter also
gets hot during operations, which is normal. However, if it gets too
hot, the fuse may blow inside, rendering the adapter useless. Table
Vgives a rough estimate of the current drawn by the electronics
under various operating conditions.

C. Software Implementation

The device connects to the computer through USB protocol. The
host computer communicates through the software. For this purpose,
the control program is written completely in python with the help
of libusb. Python code is elegant and easy to understand, and comes
with the following advantages:

1) Fast prototyping: Since the language is easy to write and
implement, free of memory leaks and segmentation faults,
it allows us to concentrate more on the logic than handling
memory.

2) Large libraries support: For every purpose there is a python
modules, ensuring that we need not reinvent the wheel.
External libraries that are imported are Scipy (and Numpy),
pyusb, python image library, VideoCapture for windows and
the v412 library for Linux, and wxpython.

3) Cross platform: The code works both on both Linux and
Windows operating systems.

Finally, an executable will be created so that the user installation is
easy. To maintain readability and distinction between various jobs,
the whole software is split into 4 modules.

1) Data module: As the name suggests, the data module does all
the data handling part. The main processes executed by the module
include extracting data from the data files, writing them to global
data arrays, retrieving coordinates for a given angle pair and vice
versa, and generating the sequence of steps to be followed by the
motors.

a) Data file format: The data is split into two parts, the
coordinates file and the angles file, each consisting of two rows,
corresponding to the two motors. In the angles file, the first column
corresponds to the right motor, assuming the machine is viewed
from the top, the links facing away from the user.

The data, can be provided in an excel form, in which case, the
data must be extracted to make the two data files.

2) Motor module: The motor module acts as interface between
the host and the device. The module depends on pyusb module.
The pyusb module further depends on libusb which creates an
access layer for the usb device. The module has functions to send
commands to the USB device to move the motors. This includes
the servo position toggle functions, and the draw line function. The
drawing function uses linear interpolation to go from one point to
another. The linear interpolation algorithm is

1) Assuming a distance between points, create N points between
the two given points.

2) Find the nearest point to each point on the grid
3) Remove all duplicate points

Also, there are few test functions in the module, which help check
the device. Note that in linux, administrative previlages are required,
since libusb needs permission to communicate.

3) Image library module (imlib): The imlib module processes
input image for tracing on the paper. The module was initially
written using python image library but was later changed completely
to scipy to improve speed. The module uses the ndimage package
from scipy for image processing routines. The main functionalities
that have been implemented allow us to digitize a previously tactiled
image e.g. that shown in Figure 1.

1) Register class finds the r, ✓ shift between the initially taken
image and the subsequent images. This class has been imple-
mented using FFT based image registration[5] [6]



2) Webcam class takes input from the webcam and processes it
to give the edges and the guide image for manual tracing. This
class depends on videocapture in windows and v4l2 module
in linux

3) Link class links the broken segments in the edge map. The
output from canny edge detection gives edges which may be
broken at some points. This class links possible broken edges
and hence reduces the number of edge segments

4) Canny class does canny edge detection [8]. It is a multi stage,
very precise but slow edge detection. The parameters for the
class are the sigma for the Gaussian blur, the window size for
the Gaussian kernel, the low threshold and high threshold.

The Canny and Link classes will yield the x, y coordinates that
make up the lines and curves that we need to trace. When the user
places a new sheet with an image that needs to be tactiled, we first
correct the x, y coordinates for any translations or rotations using
the Register class. Thereafter it becomes a simple task of controlling
the motors and the plotter head mechanism.

4) User Interface (pytacto): This module integrates all the above
modules and also provides a graphical user interface (GUI) for the
software. The GUI helps to track the points the pen is expected to
go when using manual plot. The steps followed initially are:

1) Start the device. If not connected, exit.
2) Start the splash screen to give the user feedback while loading

files.
3) Load the necessary data files.
4) Switch off the splash screen, start the GUI.

Once the gui starts, the program shows the image taken by the we-
bcam, which will aide in tracing the required curve. The commands
for creating segments are:

1) ctrl+left click creates a segment from the last created point
2) shift+left click creates a new point, disjoint from the last

segment
3) left click on a point moves the point.

Once the points are clicked, pressing the plot button will start the
machine and once the plot is done, the GUI gets back to action
again.

III. COST ANALYSIS

An important aspect of this project is the cost. As has been men-
tioned earlier, embossing is an expensive proposition and publishers
and bookstores are reluctant to produce and stock too many titles
with embossed images. A low cost device such as the Tactograph is
meant to encourage SMEs or even schools to undertake the tactiling
of books based on the demand, of previously published books, thus
making low cost tactile books easily available. Tables VI and VII
give a summary of the costs involved in making a single unit.
We have incurred a total prototyping cost of Rs 13,040/- for a
single unit. By removing expensive mechanical parts like leadscrew,
recirculating ball screw, and timing belts, we have managed a bill
of materials (BOM) considerably lower than commercially available
x-y plotters. However, it is likely that the final cost price of the
Tactograph would increase once we include costs of sales, marketing
and after sales support. However, a further reduction in BOM is
likely once the production of the Tactograph is transferred to a SME.

Table VI
COST OF MECHANICAL COMPONENTS

S.No Name Quantity Rate Cost

1 Stepper motors 2 3300/- 6600/-
2 Machining -NA- -NA- 3000/-
3 Aluminium -NA- -NA- 300/-
4 Bearings 6 30/- 180/-
5 Servo motors 1 600/- 600/-
6 Miscellany -NA- -NA- 200/-

Total 10,800/-

Table VII
COST OF ELECTRONIC COMPONENTS

S.No Name Quantity Rate Cost

1 L297 2 150/- 300/-
2 L298 2 430/- 860/-
3 PIC18F4550 1 350/- 350/-
4 ATtiny85 1 100/- 100/-
5 Connectors -NA- -NA- 100/-
6 Analog circuitry -NA- -NA- 100/-
7 Power adapter 1 250/- 250/-
8 PCB and boxing -NA- -NA- 100/-

Total 2160/-

IV. RESULTS AND SUMMARY

The efforts spent on mechanical optimization are well rewarded.
This is evident from the images in Figure 11 where we can clearly
see a faithful reproduction of the original using a pen. However,
further optimization is needed to achieve the clarity required with
the correction fluid. The last (right) image shows how we are able
to create simple tactile objects, but the locations where we start and
end the curves shows a smear of fluid. We are currently working
on a new prototype that aims to fix this problem.

Figure 11. Original (left) and Tactograph reproduction (middle) of a pen
sketch. Simple shapes with the correction fluid (right).

REFERENCES

[1] R. Cziker, “The exploration of tactile images”, ICEVI World Conference,
(p. 8). Kuala Lumpur, 2006.

[2] Word Wise, Retail Plus, The Hindu, 01 Feb 2009.
[3] R.L. Norton, Kinematics and Dynamics of Machinery, New Delhi:Tata

McGraw Hill, 2009.
[4] EE 494-Engineering Design II, Implementation of a USB PIC-to-PC

communication, METU-EEE.
[5] Microchip Application libraries. www.microchip.com/MAL
[6] Christoph Gohlke. “FFT based image registration using Python”. Inter-

net:http://www.lfd.uci.edu/⇠gohlke/code/imreg.py.html, 2011.
[7] B. Srinivasa Reddy and B. N. Chatterji, “An FFT-Based Technique for

Translation, Rotation, and Scale-Invariant Image Registration”, IEEE
Trans. Image Processing, 5, 1996.

[8] Sohaib A. Khan. “Canny Edge Detector: Implementation”.
http://suraj.lums.edu.pk/⇠cs436a02/CannyImplementation.htm, 2002.

http://www.hindu.com/rp/2009/02/01/stories/2009020150030100.htm
http://www.microchip.com/MAL
http://www.lfd.uci.edu/~gohlke/code/imreg.py.html
http://suraj.lums.edu.pk/~cs436a02/CannyImplementation.htm

	I Introduction
	II Methodology
	II-A Mechanical Design
	II-A1 Optimization
	II-A2 Mechanical Loads

	II-B Electronics 
	II-B1 USB Module
	II-B2 Power Driver Modules

	II-C Software Implementation
	II-C1 Data module
	II-C2 Motor module
	II-C3 Image library module (imlib)
	II-C4 User Interface (pytacto)


	III Cost Analysis
	IV Results and Summary
	References

